Automatic Story Segmentation using a Bayesian Decision Framework for Statistical Models of Lexical Chain Features

نویسندگان

  • Wai Kit Lo
  • Wenying Xiong
  • Helen M. Meng
چکیده

This paper presents a Bayesian decision framework that performs automatic story segmentation based on statistical modeling of one or more lexical chain features. Automatic story segmentation aims to locate the instances in time where a story ends and another begins. A lexical chain is formed by linking coherent lexical items chronologically. A story boundary is often associated with a significant number of lexical chains ending before it, starting after it, as well as a low count of chains continuing through it. We devise a Bayesian framework to capture such behavior, using the lexical chain features of start, continuation and end. In the scoring criteria, lexical chain starts/ends are modeled statistically with the Weibull and uniform distributions at story boundaries and non-boundaries respectively. The normal distribution is used for lexical chain continuations. Full combination of all lexical chain features gave the best performance (F1=0.6356). We found that modeling chain continuations contributes significantly towards segmentation performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadcast News Story Segmentation Using Conditional Random Fields and Multimodal Features

This paper proposes to integrate multi-modal features using conditional random fields (CRF) for broadcast news story segmentation. We study story boundary cues from lexical, audio and video modalities, where lexical features consist of lexical similarity, chain strength and overall cohesiveness, acoustic features involve pause duration, pitch, speaker change and audio event type, and visual fea...

متن کامل

Modeling the statistical behavior of lexical chains to capture word cohesiveness for automatic story segmentation

We present a mathematically rigorous framework for modeling the statistical behavior of lexical chains for automatic story segmentation of broadcast news audio. Lexical chains were first proposed in [1] to connect related terms within a story, as an embodiment of lexical cohesion. The vocabulary within a story tends to be cohesive, while a change in the vocabulary distribution tends to signify ...

متن کامل

Automatic recognition of multiparty human interactions using dynamic Bayesian networks

Relating statistical machine learning approaches to the automatic analysis of multiparty communicative events, such as meetings, is an ambitious research area. We have investigated automatic meeting segmentation both in terms of “Meeting Actions” and “Dialogue Acts”. Dialogue acts model the discourse structure at a fine grained level highlighting individual speaker intentions. Group meeting act...

متن کامل

Combining Words and Speech Prosody for Automatic Topic Segmentation

We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topic units. The approach combines hidden Markov models, statistical language models, and prosody-based decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach o...

متن کامل

Integrating Prosodic and Lexical Cues for Automatic Topic Segmentation

We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hiddenMarkov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009